A class of multi-level balanced Foundation-Penalty cuts for mixed-integer programs
نویسندگان
چکیده
Glover and Sherali (2003) introduced a wide class of Foundation-Penalty (FP) cuts for GUB and ordinary mixed-integer programs. The FP cuts are easy to generate by exploiting routine branch-and-bound penalty calculations, and encompass other classical cuts such as disjunctive cuts, lift-and-project cuts, convexity cuts, Gomory cuts, and mixed-integer rounding cuts. Here we focus on two special classes of FP cuts, called balanced FP cuts and multi-level balanced FP cuts, and exhibit their relationship to special forms of disjunctive cuts. A numerical example illustrates the rich variety of cuts that can be generated.
منابع مشابه
Foundation-penalty cuts for mixed-integer programs
We propose a new class of Foundation-Penalty (FP) cuts for GUB-constrained (and ordinary) mixed-integer programs, which are easy to generate by exploiting standard penalty calculations that are routinely employed in branch-and-bound contexts. The FP cuts are derived with reference to a selected integer variable or GUB set, and a foundation function that is typically a reduced cost function corr...
متن کاملPenalty Cuts for GUB-Constrained Mixed Integer Programs
Penalty cuts provide a new class of cutting planes for GUB-constrained (and ordinary) mixed integer programs, which are easy to generate by exploiting standard penalty calculations employed in branch-and-bound. The Penalty cuts are created by reference to a selected GUB set and a foundation hyperplane that is typically dual feasible relative to a current linear programming basis. As a special c...
متن کاملAncestral Benders’ Cuts and Multi-term Disjunctions for Mixed-Integer Recourse Decisions in Stochastic Programming
This paper focuses on solving two-stage stochastic mixed integer programs (SMIPs) with general mixed integer decision variables in both stages. We develop a decomposition algorithm in which the first stage approximation is solved using a branch-and-bound tree with nodes inheriting Benders’ cuts that are valid for their ancestor nodes. In addition, we develop two closely related convexification ...
متن کاملConic mixed-integer rounding cuts
A conic integer program is an integer programming problem with conic constraints.Manyproblems infinance, engineering, statistical learning, andprobabilistic optimization aremodeled using conic constraints. Herewe studymixed-integer sets definedby second-order conic constraints.We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second...
متن کاملGeneration of a reduced first - level mixed integer programmimg problem
We introduce a new way of generating cutting planes of a mixed integer programme by way of taking binary variables. Four binary variables are introduced to form quartic inequalities, which results in a reduced first-level mixed integer programme. A new way of weakening the inequalities is presented. An algorithm to carryout the separation of the inequalities, which are exponential in number, is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCSE
دوره 3 شماره
صفحات -
تاریخ انتشار 2007